May 23, 2023

Palmquist KB, Truver MT, Shoff EN, Krotulski AJ, Swortwood MJ

Journal of Forensic Sciences


Abstract

Fentanyl, fentanyl analogs, and other novel synthetic opioids (NSO), including nitazene analogs, prevail in forensic toxicology casework. Analytical methods for identifying these drugs in biological specimens need to be robust, sensitive, and specific. Isomers, new analogs, and slight differences in structural modifications necessitate the use of high-resolution mass spectrometry (HRMS), especially as a non-targeted screening method designed to detect newly emerging drugs. Traditional forensic toxicology workflows, such as immunoassay and gas chromatography mass spectrometry (GC–MS), are generally not sensitive enough for detection of NSOs due to observed low (sub-μg/L) concentrations. For this review, the authors tabulated, reviewed, and summarized analytical methods from 2010–2022 for screening and quantification of fentanyl analogs and other NSOs in biological specimens using a variety of different instruments and sample preparation approaches. Limits of detection or quantification for 105 methods were included and compared to published standards and guidelines for suggested scope and sensitivity in forensic toxicology casework. Methods were summarized by instrument for screening and quantitative methods for fentanyl analogs and for nitazenes and other NSO. Toxicological testing for fentanyl analogs and NSOs is increasingly and most commonly being conducted using a variety of liquid chromatography mass spectrometry (LC–MS)-based techniques. Most of the recent analytical methods reviewed exhibited limits of detection well below 1 μg/L to detect low concentrations of increasingly potent drugs. In addition, it was observed that most newly developed methods are now using smaller sample volumes which is achievable due to the sensitivity increase gained by new technology and new instrumentation.

FULL ARTICLE

This email address is being protected from spambots. You need JavaScript enabled to view it.