

Pharmacology and Toxicology of *N*-Pyrrolidino Etonitazene – A New Nitazene Synthetic Opioid Increasingly Observed in Forensic Cases

Sara E. Walton^{1*}, Marthe M. Vandeputte², Alex J. Krotulski¹, Donna Walther³, Grant C. Glatfelter³, Donna M. Papsun⁴, Barry K. Logan^{1,4}, Michael H. Baumann³, Christophe P. Stove²

¹Center for Forensic Science Research and Education, Willow Grove, PA

²Laboratory of Toxicology at Ghent University, Belgium

³Designer Drug Research Unit, National Institute on Drug Abuse, Baltimore, MD

⁴NMS Labs, Horsham, PA

Disclosures

- I have no conflicts of interest to disclose.
- I am a scientist and employee of FRFF / CFSRE, a 501(c)(3) non-profit research and educational facility.
- This project was supported by:
 - National Institute of Justice (NIJ): Award Number 2020-DQ-BX-0007
 - National Institute of Health (NIH): Grant Number ZIA 000523-13
 - Research Foundation-Flanders (FWO): 1S81522N and G069419N
 - Ghent University Special Research Fund (BOF): 01J15517

Background

N-Pyrrolidino Etonitazene

- "Etonitazepyne"
 - -2-Benzylbenzimidazole subclass of novel synthetic opioids (NSOs)
 - Structurally distinct from fentanyl analogues and other NSOs
- True novel nitazene analogue
 Not described in the original patent in 1957
- Discovered in 2021
 - Europe (February)
 - USA (May)
- Scheduled by the DEA in December 2021
 - Temporary placement in Schedule I

Objective

Pair *in vitro* and *in vivo* methodologies to characterize the new synthetic opioid, *N*-pyrrolidino etonitazene

- Radioligand Binding Assays (in vitro)
- Activation Potential Assays (in vitro)
- Pharmacodynamic Studies (in vivo)
- Toxicology Method Development & Validation
- Evaluation of Medicolegal Death Investigation Cases

Published Work

Archives of Toxicology https://doi.org/10.1007/s00204-022-03276-4

ORGAN TOXICITY AND MECHANISMS

Pharmacological evaluation and forensic case series of *N*-pyrrolidino etonitazene (etonitazepyne), a newly emerging 2-benzylbenzimidazole 'nitazene' synthetic opioid

Marthe M. Vandeputte¹ · Alex J. Krotulski² · Donna Walther³ · Grant C. Glatfelter³ · Donna Papsun⁴ · Sara E. Walton² · Barry K. Logan^{2,4} · Michael H. Baumann³ · Christophe P. Stove¹

Received: 7 February 2022 / Accepted: 14 March 2022 © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Pharmacodynamic Studies

Radioligand Binding – Rat Brain Tissue

- Opioid receptor binding assays
 - To determine affinity for MOR, DOR, KOR
- Radioligands (1 nM final concentration):
 - [³H]DAMGO: µ-opioid receptor label
 - [³H]DADLE: δ -opioid receptor label
 - [³H]U69,593: κ-opioid receptor label

- Non-specific binding determined by presence of 10 µM naloxone
- Stock solution N-pyrrolidino etonitazene: 10 mM
 - Compared with fentanyl and morphine
- Radioactivity counted using Perkin Elmer MicroBeta2 liquid scintillation counter
 - Ki values determined using non-linear regression analysis

National Institute on Drug Abuse

Opioid Receptor Affinity

Opioid Receptor Affinity

- MOR receptor affinity of N-pyrrolidino etonitazene com parable to morphine and greater than fentanyl
 - KOR and DOR affinity lower than morphine and fentanyl
 - Significant MOR selectivity over KOR and DOR

Ki (nM)	MOR [³ H]DAMGO	DOR [³ H]DADLE	KOR [³ H]U69,593
<i>N</i> -Pyrrolidino Etonitazene	4.09 ± 0.63	959 ± 193	980 ± 213
Fentanyl	6.17 ± 0.82	479 ± 76	224 ± 33
Morphine	3.99 ± 0.40	220 ± 41	74.4 ± 11.8

MOR Activation Potential Assays

- NanoBiT® MOR-β-Arrestin 2 Recruitment Assay
- Comparison to morphine, fentanyl, and etonitazene
 - Hydromorphone: reference drug
 - Drugs tested between 1 pM and 100 μM
- Based on functional complementation of split nanoluciferase enzyme

– Activation of MOR leads to recruitment of β -arrestin 2

MOR Activation Potential

- Potency (EC₅₀): 0.348 nM
 - 95% Confidence Interval: 0.137 0.876 nM
 - -Comparable to etonitazene
 - -800x greater than morphine, 40x greater than fentanyl
- Efficacy (E_{max}): 298%
 - 95% Confidence Interval: 264% 333%
 - -Comparable to fentanyl
 - -2x greater than morphine

National Institute on Drug Abuse

Pharmacodynamic Studies

- Hot Plate Latency: dose-dependent increases observed
 - Antinociceptive effect (~10x greater than fentanyl)
 - Maximum cut-off reached for the two highest doses
- Catalepsy: dose-dependent catalepsy observed at two highest doses

 Immobility, splayed limbs, flattened posture
- Temperature: observed significant temperature changes
 - Small increases at low dose
 - Sustained decreases at high dose

National Institute on Drug Abuse

Pharmacodynamic Studies

Toxicological Analysis

Standard Addition Methodology

Sample Preparation

- Standard Addition
 - Four total aliquots
 - Up-spikes at 0.2, 2, 20 ng/mL
- Internal Standard – Fentanyl-D5
- Basic Liquid-Liquid Extraction
 - 0.1 M Borax Buffer, pH 10.4
 - 70:30 N-butyl chloride:ethyl acetate

Instrumental Analysis

- Waters Xevo TQ-S Micro LC-QQQ-MS
- Mobile phase compositions:
 - 0.1% Formic Acid in Water
 - 0.1% Formic Acid in Methanol
- Analytical Column
 - Agilent InfinityLab Poroshell 120 EC-C18 3.0 x 100mm, 2.7 µm

Tim e (m in)	Flow (m L/m in)	%A	%B
Initial	0.4	50	50
1.0	0.4	50	50
4.0	0.4	5	95
5.0	0.4	5	95
5.1	0.4	50	50
6.0	0.4	50	50

Cases Received

- 21 cases submitted from medical examiner and coroner's offices
 - Collected January 2021 October 2021
 - Collaboration with NMS Labs
- Cases from United States & Canada
 - All postmortem cases

Additional Case Information

Case Histories

Found UnresponsiveHistory of Drug UseNot ProvidedPrior Medical History

Motor Vehicle Accident Suspected OD

Quantitative Results

- Is out of 21 cases quantitated
 - 6 blood cases reported positive
 - -1 urine case quantitated

	Matrix	Ν	Mean ± Std. Dev. (ng/mL)	Median (ng/mL)	Range (ng/mL)
N-Pyrrolidino Etonitazene	Blood	15	3.9 ± 5.9	2.4	0.3 - 25
	Urine	1	1.5	N/A	N/A

I N C R E

A S E

D

P O T E N C Y

Comparing Concentrations in Death Cases *Order similar to reported in vitro potency

Drug	N	Mean (±SD) (ng/mL)	Median (ng/mL)	Range (ng/mL)
Etodesnitazene	15	40 ± 61	5.2	0.53 - 230
Protonitazene*	3	11 ± 9.9	5	3.1 – 25
Metonitazene	18	6.3 ± 7.5	3.8	0.5 - 33
Butonitazene	1	3.2	N/A	N/A
N-Pyrrolid in o Eton itazene*	15	3.9 ± 5.9	2.4	0.3 - 25
Isotonitazene*	69	1.59 ± 1.81	1.0	0.5 - 9

May

Cases Per Month

Case Examples

Case 1

	Matrix	Concentration (ng/mL)	Other Results
N-Pyrrolidino Etonitazene	Femoral Blood	1.7	Fentanyl (2.7 ng/mL), 4-ANPP, Caffeine, Cotinine

Case History:

– 46 y/o male with a history of obesity and "heroin" use

- Case Details:
 - Femoral blood collected 10/4/2021
 - Tennessee, USA
- Manner of Death: Accidental
- Cause of Death: Combined N-pyrrolid in o etonitazene and fentanyl intoxication. Secondary conditions included obesity and cardiomyopathy.

Case 2

	Matrix	Concentration (ng/mL)	Other Results
N-Pyrrolidino Etonitazene	Femoral Blood	2.5	Ethanol (0.55 g/L), THC (9.6 ng/mL), THC-OH, THC-COOH
	Urine	1.5	7-Aminoclonazepam, Caffeine, Venlafaxine

- Case History:
 - 26 y/o male found face down in his bedroom. There was a plate with a white powdered substance organized in lines. No needles, tubes, or pipes were found. History of marijuana and tobacco use.
- Case Details:
 - Femoral blood and urine collected 4/2/2021
 - Minnesota, USA
- Manner of Death: Accidental
- Cause of Death: Toxic effects of N-pyrrolid in o etonitazene

Conclusion

Conclusion

- Paired in vivo and in vitro characterization of N-pyrrolidino etonitazene shows that this new synthetic opioid:
 - Extremely potent MOR agonist
 - High MOR activation potential; comparable to etonitazene
 - Produced significant analgesic effects
- Quantitation of N-pyrrolidino etonitazene in blood indicated low ng/mL concentrations
 - Sensitive methodology necessary
 - Only opioid in 7 cases (33%)
 - Found alongside novel benzodiazepines (benzo-dope)
 - Also discovered with stimulants, opioids, and many other NPS

Published Work

Archives of Toxicology https://doi.org/10.1007/s00204-022-03276-4

ORGAN TOXICITY AND MECHANISMS

Pharmacological evaluation and forensic case series of *N*-pyrrolidino etonitazene (etonitazepyne), a newly emerging 2-benzylbenzimidazole 'nitazene' synthetic opioid

Marthe M. Vandeputte¹ · Alex J. Krotulski² · Donna Walther³ · Grant C. Glatfelter³ · Donna Papsun⁴ · Sara E. Walton² · Barry K. Logan^{2,4} · Michael H. Baumann³ · Christophe P. Stove¹

Received: 7 February 2022 / Accepted: 14 March 2022 © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Acknowledgements

- Co-Authors
 - Marthe Vandeputte and Christophe Stove Ghent University
 - Mike Baumann, Donna Walther, and Grant Glatfelter Designer Drug Research Unit at NIDA
 - Alex Krotulski and Barry Logan CFSRE
 - Donna Papsun NMS Labs
- CFSRE Staff
- NMS Labs

NMS LABS

When you need to know.™

 Collaborations with medical examiner and coroner offices

Thank you! Questions?

Contact: sara.walton@cfsre.org

Visit, Download, or Subscribe:

www.cfsre.org

Follow us:

Twitter @NPSDiscovery Twitter @CFSRE_